skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narayanan, Praveen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tensor compilers, essential for generating efficient code for deep learning models across various applications, employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting. To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL, to represent rewrite rules using a novel axis definition, called aggregated-axis, which allows us to reason about an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the correctness of 115 out of 175 rules in their full generality, while the closest automatic, bounded-verification system can express only 18 of these rules. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026
  2. Tensor compilers, essential for generating efficient code for deep learning models across various applications, employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting. To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL, to represent rewrite rules using a novel axis definition, calledaggregated-axis, which allows us to reason about an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the correctness of 115 out of 175 rules in their full generality, while the closest automatic,bounded-verification system can express only 18 of these rules. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  3. Probabilistic programming languages are valuable because they allow domain experts to express probabilistic models and inference algorithms without worrying about irrelevant details. However, for decades there remained an important and popular class of probabilistic inference algorithms whose efficient implementation required manual low-level coding that is tedious and error-prone. They are algorithms whose idiomatic expression requires random array variables that arelatentor whose likelihood isconjugate. Although that is how practitioners communicate and compose these algorithms on paper, executing such expressions requireseliminatingthe latent variables andrecognizingthe conjugacy by symbolic mathematics. Moreover, matching the performance of handwritten code requires speeding up loops by more than a constant factor. We show how probabilistic programs that directly and concisely express these desired inference algorithms can be compiled while maintaining efficiency. We introduce new transformations that turn high-level probabilistic programs with arrays into pure loop code. We then make great use of domain-specific invariants and norms to optimize the code, and to specialize and JIT-compile the code per execution. The resulting performance is competitive with manual implementations. 
    more » « less